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Abstract

We focus on predicting demands of bicycle usage in Velib system of Paris, which
is a large-scale bicycle sharing service covering the whole Paris and its near suburbs.
In this system, bicycle demand of each station usually correlates with historical Velib
usage records at both spatial and temporal scale. The spatio-temporal correlation
acts as an important factor affecting bicycle demands in the system. Thus it is a
necessary information source for predicting bicycle demand of each station accurately.
To investigate the spatio-temporal correlation pattern and integrate it into prediction,
we propose a spatio-temporal network filtering process to achieve the prediction goal.
The linkage structure of the network encodes the underlying correlation information.
We utilize a sparsity regularized negative binomial regression based variable selection
method to learn the network structure automatically from the Velib usage data, which is
designed to highlight important spatio-temporal correlation between historical bicycle
usage records and the bicycle demands of each station. Once we identify the network
structure,a prediction model fit well with our goal is obtained directly. To verify the
validity of the proposed method, we test it on a a large-scale record set of Velib usage.
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1 Introduction1

Urban shared-mobility has attracted more and more attentions for both academic re-2

searchers and city policy-makers to build livable and sustainable communities. Bicycle3

sharing systems (BSS) have been very successfully deployed in many metropolitans in4

the world. The main motivation is to provide users with free or rental bicycles espe-5

cially suited for short-distance trips in urban areas, thus reduces traffic congestion, air6

pollution and noise that leads to high economical and social cost. In Europe, BSSs are7

most popular in southern European countries. Thanks to their unquestionable success8

[7, 4], more and more European cities works to provide this mode of mobility in or-9

der to modernize the city planning. In France, the first implementation of BSS was10

in Lyon in 2005 (it is called Velib’v). Nowadays,BSSs have been launched in twenty11

French cities, including Paris, one of the most large-scale BSSs in France (it is called12

Velib).13

The fundamental issue of BSS study is to understand bicycles mobility patterns and14

regulate availability of the bicycles in the urban network. Due to differences between15

city blocks in social activities and functions, demands of short-distance trips usually16

form non-uniform spatio-temporal patterns. Some BSS stations tend to face large17

demand of bicycles during specific time periods. The planning department of BSS thus18

needs to forecast the bicycle demand variations at each station, in order to balance the19

bicycle loading in the system. Several studies [10, 2, 16, 13] have shown the usefulness20

of analyzing the data collected by BSSs operators. The redistribution of bicycles can21

benefit from the analysis of statistical bicycle usage patterns [8, 14, 1].22

Fruitful progress as these studies have achieved, there is still an open question of23

BSS service demand prediction. What are the factors affecting bicycle demands of one24

specific station ? How do the bicycle demands of one station correlate with historical25

bicycle usage patterns ? Previous works attacked the prediction of BSS demands mainly26

from two aspects. In [11], the spatio-temporal bicycle usage patterns of the whole27

network are extracted from BSS data using clustering algorithms and historical average28

of BSS demands corresponding to each pattern is employed to achieve the forecast goal.29

On the other hand, [11] ignores the spatio-temporal correlation and construct station-30

wise forecast only depending on the temporal dynamics of each station. However,both31

of them don’t investigate the spatio-temporal factors of bicycle demands with respect32

to individual stations explicitly.33

The contribution of this paper aims at solving the investigation of the spatio-34

temporal bicycle usage patterns through a network structure learning procedure. Our35

objective is to exhibit the important factors affecting the Velib service demands at36

each station in order to provide a direct solution to the open problem. Based on the37

analysis, we are able to achieve our goal of Velib service demand forecast for the whole38

network immediately.39

This paper is organized as follows. In Section.2, a general description of Velib40

system is given. Section.3 describes the proposed analysis methodology performed41

on the collected Velib usage data. Section.4 is devoted to illustrate the identified42

spatio-temporal factors on Velib service demand at each station. Section.5 presents the43

capabilities of the proposed method in forecasting Velib service demands, in comparison44
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with two other baseline regression technologies utilizing no explicit spatio-temporal45

factors of bicycle demands at all. Section.6 concludes the whole paper.46

2 Velib system description47

Velib is designed to facilitate sightseeing and public transportation in urban areas48

of Paris in 2007. Total 7,000 bicycles are initially distributed to 750 fixed stations.49

In 2008, Velib system is further extended to 20,000 bicycles over 1,208 fixed service50

stations. The system serves 110,000 short-distance trips on average per day. Most51

Velib stations are located within Paris. A small proportion of stations are distributed52

in the near suburbs in order to extend sharing service.53

Velib provides a non-stop 24-hour bicycle rental service. Each Velib station has54

an automatic rental payment terminal and 8 to 70 bicycle docking positions. There55

are totally 40,000 docking positions available in the system. Each bike is locked to its56

docking position electrically. Users can either purchase a short-term (daily or weekly)57

usage of the bicycle or charge a annual pass card. To fetch the bicycle, the user need to58

show his usage card to RFID terminals equipped with each docking position in order to59

unlock the bicycle. The first 30 minutes for short-term rental and the first 45 minutes60

for annual rental of every trip is free of charge. Users can return the bicycles easily to61

any station at any time.62

The Velib usage dataset used in our work is composed of over 2,500,000 trip records63

during five months (April, June, September, October, December) in 2011. To obtain64

stable usage patterns, we remove trips with time duration of less than one minute and65

with the same station as origin and destination from the data set. These fake trips66

correspond to users’ mis-operations. Finally we reserve trips from 1188 stations in the67

city. Based on the trip data, we count the number of bicycles departing from and enter-68

ing each station per hour. The number of departing bicycles per hour at each station69

represents the hourly profile of Velib service demand at this station. Figure. 1 shows70

the histogram of time duration of each bicycle trip. The y axis represents the number71

of the trips with different levels of time duration length. Most trips are finished within72

less than 2 hours, which is consistent with the fact that Velib system serves the short-73

distance mobility in the city. We count the average number of departing bicycles per74

hour for all the stations to evaluate activity level of Velib usage globally in the system.75

Figure. 2 shows the difference in hourly Velib usage between weekdays and weekends.76

A cyclostationarity pattern can be seen in Velib usage during weekdays. Three peaks77

of weekday usage can be observed in Figure 2: the most significant two correspond to78

the public commutes (from 8am to 10am and from 6pm to 9pm), while the third one79

from 11 am to 13 pm corresponds to the lunch break. They represent travel patterns of80

public transportation, such as home-office and office-restaurant patterns. In contrast,81

the morning peak usage disappears during the weekends. Velib usage gradually reaches82

the maximum in the afternoon, reflecting the travel patterns of the leisure time.83

These statistics give a general profile of Velib usage patterns in the system. In84

this paper, based on the extracted Velib usage count data, we aim to achieve short-85

term forecast of the bicycle demands at each station by analyzing inter-station spatio-86

temporal correlation of bicycle usages.87
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Figure 1: Statistics of time duration of each trip
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Figure 2: Average number of departing per hour during weekdays (continuous blue line) and weekends
(dashed red line).
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Bicycle demand 
at the time t 

Bicycle usage records 
from the time t-T to t-1

Figure 3: Spatio-temporal predictive network

3 Velib demand prediction through learning of88

spatio-temporal network structure89

We use Xout
i,t and Xin

i,t i = 1, 2, 3..., n to note the number of bicycles departing from90

and entering the station i at the time t respectively. n = 1188 is the number of Velib91

stations. Each pair of Xout
i,t and Xin

i,t indicate the temporal dependent usage pattern92

of Velib service of each station. Notably Xout
i,t represents bicycle demands of the sta-93

tion i at the time t, which is the target of the predictive analysis. In our work, we94

assume that the temporal dynamics of bicycle demand is a stationary markov pro-95

cess. It means the Xout
i,t only depends on the recent Velib usage records from t − T96

to t − 1. Considering most Velib trips are short-distance travels that last no more97

than 2 hours, the markovian assumption is reasonable and we set T to be 2. With98

this setting, the conditional dependence between historical Velib usage records and99

the bicycle demands to be predicted in the system can be described using a spatio-100

temporal network G = {∆1,∆2, E},as in Figure. 3. ∆1 and ∆2 are two sets of nodes.101

Each node of ∆1 is the historical Velib usage Xout
i,j and Xin

i,j in the system from the102

time j = t − T to j = t − 1. Nodes of ∆2 correspond to bicycle demands at the103

time t Xout
i,t for each station, which are the prediction target. E is the set of di-104

rected edges linking nodes of ∆1 and ∆2. The linkage structure of the network rep-105

resents spatio-temporal correlations between the historical Velib usage records Xout
i,j106

and Xin
i,j (i = 1, 2, 3..., n, j = t− T, t− T + 1, ...., t− 1) and the prediction target Xout

i,t107

(i = 1, 2, 3..., n).108

A link from one node in ∆1 to another in ∆2 represents the existence of spatio-109

temporal correlation that is useful for prediction between the two nodes On the con-110

trary, if two nodes from different sets are separated with no linkage, they are irrelevant111

with respect to the prediction goal. The interior linkage between nodes within ∆1 and112

∆2 are ignored since we aim to construct a prediction model instead of a generative113

model to simulate spatio-temporal dynamics of Velib usage.114
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For each node s in ∆2, we note the N(s) is the set of nodes in ∆1 that are linked to115

the node s. In the domain of network structured data analysis, N(s) is also defined as116

a neighbor set of s in the network G. Identifying neighborhood structure for each node117

in ∆2 finally achieves to reconstruct the network structure. In our work,neighborhood118

selection is the key step to analyze the useful spatio-temporal correlation between ∆1119

and ∆2 . In statistics,it is an intuitive solution to calculate covariances between nodes120

of ∆1 and ∆2 and judge the correlation level given the covariances. However, in large-121

scale urban area, the number of nodes in ∆1 (n times T) is usually much larger than the122

volume of the available historical Velib usage records. The derived covariances easily123

generates fake correlation between nodes [9]. In machine learning research, estimating124

correlation structure of high-dimensional data is a popular topic. Most solutions are125

proposed by performing global sparsity constraint on covariance matrix of data to126

find the strong correlation patterns [9]. This kind of methods assumes that all nodes127

follow a joint normal distribution. It fits the joint data distribution with a generative128

gaussian random field [9], which is beyond the goal of the prediction task. Furthermore,129

the joint normal distribution assumption is not valid for count data. The alternative130

solutions investigate the correlation of each node in the network with the others by131

performing sparsity-inducing regression. Treating the concerned node s in ∆2 as the132

regression target and the other nodes in ∆1 as covariate of regression, the sparsity-133

inducing regression generates sparse regression coefficients. Zero coefficients indicate134

conditional independence between the corresponding nodes of ∆1 and the concerned135

node s, while coefficients with distinctively large magnitudes indicate strong correlation136

between them. Benefited from the regression-oriented neighborhood selection scheme,137

the identified correlation structure is intrinsically selected to suit the prediction task.138

Furthermore,we can obtain a prediction model immediately after fixing the network139

structure. Therefore, we address the issue of network structure learning following this140

idea.141

3.1 L1-norm regularized negative binomial regression for142

neighborhood selection143

For each node X∆2,s in ∆2, we identify its neighbors in ∆1 with a sparsity regularized144

regression model. The mathematical expression is defined as follows:145 (
θsk
)

= minθsf
(
X∆2,s , X∆1,k, θ

s
)

+ λ‖θs‖

k = 1, 2, ...2 ∗ n ∗ T
(1)

In Eq 1,X∆1,k k = 1, 2, ...2 ∗ n ∗ T represents all nodes in ∆1, representing historical146

records of the number of bicycles entering or departing from each station within the147

time frame from t − T to t − 1. θs is the regression coefficient vector of the same148

dimension as X∆1,k k = 1, 2, ...2 ∗ n ∗ T for the station s. Each component θsk is the149

regression coefficient for the corresponding node X∆1,k. ‖θ‖ is the L1 norm of θs,150

defined as sum of absolute values of each θsk. The function f
(
X∆2,s , X∆1 , θ

s
)

is a151

generalized linear regression model to suit different types of the regression target.λ152

is the penalty parameter balancing the sparsity-introducing regularization and the153
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regression cost. In [5, 15, 18], f is a least regression function on X∆2,s suited for154

continuous variable. [17] defines f as a logistic regression function since the regression155

target is a binary in Ising model. In our work, X∆2,s represent the number of bicycle156

rented at the station s, which is integer count data. Therefore,we define f as negative157

binomial regression model as in Eq 2.158

f = logPnb

(
X∆2,s

)
Pnb

(
X∆2,s

)
=

Γ
(
X∆2,s + ψ

)
Γ
(
X∆2,s + 1

)
Γ (ψ)

(
ψ

ψ + µ

)ψ( µ

µ+ ψ

)X∆2,s (2)

where µ = e
∑
k θ

s
kX∆1,k is the mean of the negative binomial distribution Pnb

(
X∆2,s

)
.159

In generalized linear model, it is fitted using the exponential link function based on the160

covariate X∆1,k. ψ is the dispersion parameter of negative binomial distribution. Γ is161

the Gamma function defined as Γ (n) = (n− 1)!. Negative binomial regression [12] is a162

generalized poisson regression to fit the dispersed count data with the larger variance163

than the mean. The standard poisson regression is formulated as follows:164

Ppoisson

(
X∆2,s

)
=
e−µpµp
X∆2,s !

(3)

where µp = e
∑
k θ

s
kX∆1,k

+ε,including a random intercept ε as random noise. µp is the165

product of the link function e
∑
k θ

s
kX∆1,k and the random factor ν = eε. The link166

function represents the non-linear relation between the poisson mean and the input167

covariate. Negative binomial regression is then derived by performing gamma prior168

probability on the random factor ν and integrating out ν, as expressed in the followings:169

Pnb

(
X∆2,s

)
=

∫ ∞
0

Ppoisson

(
X∆2,s

)
h (ν) dν (4)

where h = δψ

Γ(ψ)ν
ψ−1e−νδ is the gamma prior probability on ν. δ is the shape parameter170

of the gamma distribution. In poisson regression,both the mean and variance of poisson171

distribution equals to µ. However, in the Velib count data, the count data X∆2,s are172

more dispersed. The variance is distinctively larger than the mean. By introducing173

the gamma prior probability in Eq. 4, the mean and the variance of X∆2,s are modeled174

respectively as µ and µ+ µ2

ψ in negative binomial regression. The dispersion parameter175

ψ enables more flexibilty to fit variance with different magnitudes. When ψ goes into176

infinity, negative binomial regression is reduced to standard poisson regression.177

Performing the L1 norm based penalization leads to a sparse θs vector. Only a small178

proportion of components θsk have distinctively large magnitudes, while the others are179

exactly zeros or have very small magnitudes approaching to zero. Through this way, the180

nodes X∆1,k with distinctively large non-zero thetask are the most important spatio-181

temporal factors affecting the bicycle demands X∆2,s . It indicates the existence of182

linkage between the corresponding historical Velib usage records and X∆2,s .The weight183

of this link is the value of the coefficient θsk The rest extremely weak or zero coefficients184
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have no weight in predicting, thus they indicate no linkage connecting the corresponding185

nodes in ∆1 to X∆2,s . The sparse structure of θs gives rise to a compact spatio-temporal186

correlation structure in the network. Once we fix the network structure according to187

thetas, it is then direct to construct a negative binomial regression model to predict188

the bicycle demands of the station s. Given all Velib historical usage information in ∆1189

as input, the prediction for all 1188 stations proceeds as a network filtering procedure,190

providing estimation of nodes in ∆2. Discriminating power of this generalized linear191

model is verfied in previous works [12].The predictive model integrates the spatio-192

temproal correlation of Velib usage records. The sparse structure of the network linkage193

improves the model compactness by removing irrelevant Velib usage information. In194

[18, 17], Xu et al proves that the L1 norm regularization gives the asymptotically195

correct estimation of neighborhood structure if the underlying neighborhood is sparse.196

In Velib service, the bicycle demand denotes the short-distance trip custom in Paris.197

The bicycle demands at one station are only correlated with those of a specific group198

of stations. Therefore, this characteristic implies a underlying sparse spatio-temporal199

correlation structure. The penalization parameter λ is fixed by cross-validation in the200

neighborhood selection procedure. It is chosen as the one that minimizes the regression201

error while reserving the sparsity of θ in cross-validation.202

3.2 Solution to regularized negative binomial regression203

We assume the training data involves total m days of Velib usage data. Each day204

contains 24-hour records of Xout
i,t and Xin

i,t i = 1, 2, 3..., n, t = 1, 2, 3, ..., 24. As a result,205

we can sample 22 time frames of length 2 to form the set XDelta1 on each day. In206

this setting, we can construct a training data set containing 22 ∗m pairs of Xj
Delta1,k

207

(k = 1, 2, 3..., 2 ∗ n ∗ T ) and Xj
Delta2,s

(j = 1, 2, 3..., 22 ∗m). The objective function for208

estimating θs is then formulated as follows:209

θs = minθs
∑

j=1,2,3...,22∗m
f
(
Xj

∆2,s
, Xj

∆1
, θs
)

+ λ‖θs‖ (5)

Given a fixed penalization parameter λ, minimizing the cost function in Eq. 5 with f210

as the negative binomial regression equals to solve a regularized maximum likelihood211

problem. However,f is not convex due to simultaneous optimization with respect to θs212

and the dispersion parameter ψ. To address problem, an interior point optimization213

method [3] is applied to relax the original minimization procedure and search for an214

approximated solution. The basic idea is to optimize the cost function Eq. 5 with215

respect to only one variable at each time, while the other one is fixed. Each subproblem216

of optimization is convex and easy to solve by taking the first-order conditions and217

making them equal to zero. The two first-order optimum conditions, one for θ and one218
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for ψ, are presented as:219

∑
j=1,2,3,...,22∗m

Xj
∆2,s
− µj

1 + ψ−1µj
+ sgn(θs) = 0

∑
j=1,2,3,...,22∗m

 log 1 + ψ−1µj −
∑

l=1,2,3,...,Xj
∆2,s
−1(

ψ−1
)2 +

Xj
∆2,s
− µj

ψ−1
(
1 + ψ−1µj

)
 = 0

(6)

where µj = e
∑
k θ

s
kX

j
∆1,k and sgn indicates the signs of all θsk in θs. Original difficult220

jointly optimizing problem is relaxed to alternative updates of the parameters θ and221

ψ iteratively until convergence. Since the non-convexity of the cost function, the al-222

ternative update procedure doesn’t guarantee to achieve a global optimum. A proper223

warm-start allows the alternative optimization procedure to achieve reasonably good224

solution fast. In our work, we follow the idea of [12] to use a poisson regression pa-225

rameter to initialize θ and ψ in Eq. 4. For each station, the convergence is achieved226

for each fixed λ after 50 iterations on average.227

4 Spatial-temporal correlation structure of Velib228

usage229

The sparse structure of the regression coefficients θs indicates the historical Velib usage230

records Xin
i,j and Xout

i,j (j = t− 1, t− 2) that are the most informative for the predic-231

tion task. It unveils the compact spatio-temporal correlation pattern with respect to232

the station s. Magnitudes of the non-zero regression coefficients are proportional to233

the correlation level of the corresponding historical Velib usage records with the pre-234

diction target. In the followings, we illustrate the learned spatio-temporal correlation235

structures for four stations. Two of them corresponds to Velib stocking points located236

around the rail-way stations in Paris (Gare du Nord and Gare de Lyon). The other237

two are located in the down-town area of Paris, near the places of interests (Saint Ger-238

man des Pres and Louvre). Geographical locations of these four stations are carefully239

selected. Velib usage records of these stations represent typical Velib usage patterns240

of common home-office travels and sightseeing-oriented travels in Paris. Most short-241

distance mobility in Paris belong to either of the two travels. For each station s,242

if the sparse regression coefficient θs has less than 20 non-zero entries, we illustrate243

all the correlated historical Velib usage records corresponding to the non-zero regres-244

sion coefficients. Otherwise, we select the correlated historical records corresponding245

to the 20 non-zero regression coefficients of the largest magnitudes. The blue pots246

in the figures illustrate the concerned station s. The red pots indicate the station i247

(i ∈ 1, 2, 3, ..., 1188) corresponding to selected
{
Xout
i,j

}
during the precedent 2 hours248

that are the most correlated with Xout
s,t , while the green pots are the the station i249

(i ∈ 1, 2, 3, ..., 1188) corresponding to the most correlated
{
Xin
i,j

}
during the precedent250

2 hours.251
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(a) Gare de Lyon (b) Gare du Nord

(c) Saint Germain des Pres (d) Louvre

Figure 4: Typical spatio-temporal correlation structure.
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In Figure 4(a) and 4(b), we can find both local and non-local spatial-temporl cor-252

relation structures. For example in Figure 4(a), Velib service demand near Gare de253

Lyon is strongly correlated with historical Velib usage information at the entrance254

of Gare de Lyon (noted by a circular region )and Hotel de Ville (noted by a square255

region) that locates closely to Gare de Lyon. Besides, Velib usage records around256

Gare de Saint-Lazare (noted by a star-shaped legend) also present high-level correla-257

tion with the prediction target. In Figure 4(b), Velib demand at Gare du Nord has258

a non-local correlation with Velib usage records at Gare Montparnasse (noted with a259

circular legend) and the center of Paris (noted with a square legend). The existence260

of the spatio-temporal correlation doesn’t necessarily indicate the existence of physical261

bicycles flows between the selected stations and the the concerned station s. It means262

that the historical Velib usage patterns at those stations provides the most critical263

information in prediction the Velib demand at the station s. This spatio-temporal264

correlation structure is arisen by either bicycle flow interactions or similar temporal265

dynamic patterns of Velib usage. The former presents a local correlation at most time266

and can be investigated further by looking into trip records, while the latter usually267

presents a non-local correlation strcuture and can not be captured by the trip data. It268

provides complementary information for prediction of Velib service demand at the con-269

cerned station. In Figure 4(c) and 4(d), the spatio-temporal correlation structure are270

more local than that in the first two figures, Most selected correlated stations locate271

within the neighborhood of the concerned station. This phenominon represents the272

characteristics of sightseeing mobility patterns. Different from public transportation,273

Velib usages for sightseeing are concentrated near the places of interests of the city.274

In Paris, most places of interests are distributed near Boulevard de Saint-Germain des275

Pres and Musee du Louvre, along the Seine river. Therefore, originations and destina-276

tions of sightseeing travel by Velib are usually within the same area. Besides, temporal277

variation of bicycle usage for sightseeing is normally inconsistent with that of daily278

commute. Thus, the bicycle flow interaction becomes the most importation factor af-279

fecting the Velib usage patterns of the last two stations, which in turn gives rise to the280

local spatio-temporal correlation structure.281

5 Experiments on spatio-temporal prediction of282

bicycle usage demand283

In this section, we illustrate the prediction performance of the proposed method. In284

all 152 days of Velib usage count data, we choose each day in turn for testing regres-285

sion performance and use all the others for learing the network linkage structure θs286

(s = 1, 2, 3..., 1188). For the testing day, given Velib usage count of precedent 2 hours287

(t − 1 and t − 2),the task is to predict the bicycle demand Xout
:,t at the time t for288

all 1188 stations based on the learned θs, where t = 1, 2, 3, ...22. The obtained θs289

(s = 1, 2, 3.., 1188) are directly used to estimate the mean value µ of the negative bino-290

mial regression model in Eq. 2. The mean value µ is the forecast of bicycle demands.291

The absolute error between the predicted bicycle demands for each station s at each292

time t is obtained during the testing process. The sample mean and sample variance293
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of the absolute errors are used to evaluate prediction accuacy.294

We compare the proposed method with two other prediction schemes. The first295

one is an intuitive solution. It constructs a poisson regression model for each station296

independently to achieve temporal prediction,ignoring the spatio-temporal correlation297

of Velib usage unveiled in the last section. The input of the poisson model for the298

station s is the Velib usage data Xin
s,j and Xout

s,j (j = t− 2, t− 1). The output is the299

bicycle demand Xout
s,t at the time t. The parameters of each poisson regression model300

are estimated using the quasi-newton optimization. We name it as station-wise poisson301

regression hereafter.302

The other one is designed to make use of the spatio-temporal patterns of Velib303

usage in an inexplicit way, It combines nearest neighbor regression technologies and304

state space temporal dynamic model to achieve prediction of the bicycle demand at305

each station simulataneously [6].In this method, we treat Velib usage count Xin
:,t and306

Xout
:,t for all stations at the time t as a multivariate vector Yt of 1188 ∗ 2 = 2376307

dimensions, considering both the volume of bicycles enterring and departing from each308

station. Based on the training set of 151 days, we form a matrix Y train∈R3624∗2376
309

by integrating daily records of all 151 days into the sequence of hourly records of310

151 ∗ 24 = 3624 hours. Each row is defined as Yt and the rows are arranged following311

the temporal order of all 151 days in the training set. We then employ Principle312

Component Analysis (PCA) to decompose the matrix Y train and project each row313

Y train
t to a low-dimensional subspace. We calculate the first k principle eigen vectors314

of Y train corresponding to the largest spectrum energy. These principle eigen vectors315

form a projection matrix P ∈ R3624∗k, with the eigen vectors arranged as column316

vectors. The k-dimensional projection Φtrain
t of each Y train

t is expressed as P TY train
t .317

Through this way, we integrate the spatio-temporal Velib usage patterns within the318

short-term time frames into a compact k-dimensional projection subspace Ω. During319

the testing procedure, for the testing day, we firstly project the Velib usage count Y test
j320

at the time j = t − 2, t − 1 to the k-dimensional space Ω using the projection matrix321

P . After that, we calculate the distance in the projection space between the sequence322 {
Φtest
j=t−2,t−1

}
and the sequences

{
Φtrain
j=(l−1)∗24+t−2,(l−1)∗24+t−1

}
at the corresponding323

time frame (j = t− 2, t− 1) of each day l in the training data set, in order to identify324

the p nearest neighbors of the testing day in the subspace Ω. The distance measure325

between the sequences is defined as summation of cosine distance between the PCA326

projections:327

Dis =
∑

j=t−2,t−1

(
Φtest
j

)T
Φtrain

(l−1)∗24+j

‖Φtest
j ‖

L2
‖Φtrain

(l−1)∗24+j‖L2

(7)

where ‖‖L2 denotes the L2 norm of vector.The bicycle demand Xout
:,t of all stations328

at the time t on the testing day is predicted as the average of the bicycle demands329

Xout
:,t at the corresponding time t of the p nearest neighboring days in the training330

set. The PCA projection conserves global characteristics of Velib usage over the whole331

network. Nearest neighbor searching in the PCA space considers similarity of spatio-332

temporal Velib usage patterns between the historical records and the testing sample.333

The final prediction is a linear combination of the historical bicycle demands with334

similar precedent spatio-temporal Velib usage pattern. This scheme achieves to predict335
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Table 1: Prediction accuracies of the three methods

Prediction method Average prediction error Variance of prediction error
Station-wise poisson re-
gression

2.05 15.6

NN+PCA 1.47 3.80
The proposed method 1.45 3.65
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Figure 5: The number of selected neighbors for each station

the Velib demands at all stations simulatensouly. In the followings, we note this scheme336

as NN + PCA for short. For fair comparison, we adjust the number of the nearest337

neighbors in prediction to achieve the best performance.338

As we can see in Table 1. The proposed negative binomial regression model achieves339

superior performances to NN + PCA and the station-wise poisson regression model340

with respect to both mean and variance of prediction error. NN + PCA performs341

much better compared with the station-wise poisson regression. The experimental re-342

sults are consistent with the original expectation. Both the proposed spatio-temporal343

network based prediction method and the NN + PCA make full use of the short-344

term spatio-temporal Velib usage patterns in constructing the temporal forecast model.345

The station-wise poisson regression model only depends on station specific Velib us-346

age records. The former two gains more predictive information from the investigated347

spatio-temporal Velib usage patterns to narrow the variance of Velib demand estima-348

tion, making the prediction more close to the underlying values. The network structure349

learning procedure extracts the prediction-oriented spatio-temporal correlation struc-350

ture with respect to each station. In contrast, NN + PCA conserves only global351

spatio-temporal usage patterns. This global information is corase and is not tailored352

for temporal prediction of each local station. Thus NN + PCA performs less accu-353

rately than the proposed method. Figure 5 illustrates the the number of neighbors in354

X∆2 for each station. As illustrated, the proposed method benefits from the sparsity-355

introducing regularization to construct a sparse linkage structure in the spatio-temporal356
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(a) Average prediction error per hour
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(b) Average prediction error per station

Figure 6: Hour-wise and station-wise average prediction error

network. 295 neighbors are selected for each station on average. This sparse linkage357

structure is helpful in selecting the really useful spatio-temporal correlation of the Veilb358

usage and improving the computational efficiency of prediction.359

Figure 6(a) and Figure 6(b) illustrate the variation of average prediction error for360

each hour and each station respectively by performing the proposed method in the361

training/testing process. As shown in Figure 6(a), about ten percent of the all stations362

has distinctively larger prediction errors than the others. They correspond to the363

stations around transportation hubs, such as railway stations and places of interests in364

Paris. Velib usage at those stations are easily affected by the social-economic factors,365

such as type of the day (week-end, public holiday or common working days) and special366

events (accidents or adjustment of public transportation modes). Figure 6(b) shows the367

variation of prediction error corresponding to different hours of day. We can find that368

there are two peaks of prediction errors in 24 hours of one day. One is centered around369
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10 am, the other is around 19 pm. These two peaks are consistent with the peaking370

hour of public transportation. Large travel demand in Paris during the peaking hour371

increase the variance of Velib usage counts globally in Velib system.372

6 Conclusion373

In this paper, we aim to predict short-term Velib service demand variations at each374

station of Velib system based on historical Velib usage records. The simultaneously375

prediction for all stations is formulated as a spatio-temporal network filtering process.376

Given the historical Velib usage records as the input set of the network, the linkage377

structure of the network represents the spatio-temporal correlation structure between378

the historical information and the prediction target that is highly relevant with the379

prediction goal. A properly configured network linkage structure will give the accurate380

prediction efficiently. Therefore, the learning of the underlying network structure plays381

the key role in this work.382

To achieve this goal, we propose to integrate a count data regression model and a383

sparsity-introducing regularization, named L1 regularized negative binomial regression,384

to identify the most relevant spatio-temporal Velib usage patterns with the prediction385

target at each station. This procedure thus provides a sparse estimation of the network386

linkage structure. Due to the count data regression component, the identified linkage387

is designed to suit the goal of accurate temporal prediction. Benefitted from the L1388

based sparsity regularization, the derived linkage structure is compact, in order to re-389

move the irrelevant and redundant information from the constructed prediction model.390

Experiments on massive amounts of Velib usage records in the large-scale urban area391

verify the superior forecast power of the proposed method. Besides, we also show that392

the identified spaio-temporal correlation of Velib usage records is consistent with daily393

Velib usage behaviors in the Velib system. This confirms the capability of the proposed394

method in describing the intrinsic rules of short-distance Velib travels in the city.395
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